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Richard A. Redner, Mark E. Lee and Samuel P. Uselton
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ABSTRACT

We present a new method for representing light sources for use in realistic image

synthesis. Each light source is described as a multi-dimensional function based on product

tensor splines. This representation allows the radiance of the light sources to vary according

to the direction of emission, wavelength, and position on the emitting surface. The product

tensor spline lighting functions are easily evaluated, can be generated from sample rays

and can generate samples for distributing light throughout the scene.

The product tensor spline lighting functions have been incorporated into a wavelength

dependent bidirectional ray tracing program and example images are provided which ex-

hibit prismatic effects.

Keywords: bidirectional ray tracing, lighting functions, sampling.

I. INTRODUCTION

Many recently developed algorithms for the generation of realistic computer generated

images can naturally be decomposed into two procedures. The first procedure maps the

initial lighting information into the scene and the second procedure per%_s the final ren-

dering. As an intermediary between these two procedures we have a function or structure

which captures this complex lighting information.

Complex lighting functions can also be used as primary so_ces. In particular the

addition of distributed light sources into ray tracing systems has greatly improved the

quality of ray traced images.

In this paper we will briefly review some of the papers which have considered dis-

tributed and directionatly dependent light sources. We will then review several 2-pass

procedures related to ray tracing and radiosity and comment on the lighting function or

structure used to connect the light propagation system with the rendering system. We will

describe our wavelength dependent bidirectional ray tracing system and develop a new

algorithm for the representation of lighting information.

These ideas have been used to construct a wavelength dependent bidirectional ray

tracing system and we end the paper by describing 2 images w_ch exhibit prismatic

effects.

2. RELATED WORK

The need for more complex primary Hght sources has been addressed by several au-

thors. In partic_ar, Warn [Warn83] developed easily implemented directionally dependent

lights and implemented flaps and cones in order to create spotlights. The flaps and cones

are used to restrict the i_uence of the source when shadow rays are sent to the light.

Verbeck [Verb84] and Nishita et. al. [Nish85] have used point light sources which vary in



intensity and spectral content as a function of direction. Complex lighting functions sim-
ulating realistic outdoor lighting conditions were used by Nishita and Nakamae [Nish86]
and Takagi et. al. [Taka90].

Cook et. al [Cook84] introduc%ddistributed lights or area lights to ray tracing and
light sourcesusedin racliosity areusually arealight sources.As waspointed out by Kajiya
[Kaji86], both ray tracing and radiosity methodsrepresentmethodsfor solving a particular
integral equation commonly referred to as the rendering equation. For more information
on algorithms usedto solve the rendering equation and an excellent presentation on light
transport and the necessitiesof hybrid solutions, pleaserefer to the papers by Sillion and
Puech [Sii189],Heckbert [Heck90]and Watt [Watt90].

The radiosity method was introduced by Goral et. al. [Gora84] and is a direct attempt

to solve a discretized version of the radiosity equation. Surfaces are partitioned into grids

and each cell is assigned a radiosity value By the light propagation algorithm. The radiosity

algorithm was improved by Cohen and Greenberg in [Cohe85] by the introduction of the

hemi-cube structure. The radiosity paradigm was further extended to include specular

reflection [Imme86] and the hemi-cube structure was replaced by globa! cubes to allow for

the addition of directional information. In the paper by Wallace et. al. [Wall87] a "two-

pass solution" is described where the light propagation algorithm computes the diffuse

lighting effects and the specular lighting effects are determined by a ray tracing procedure.

This procedure was extended by Sillion and Puech [Si1189]. Again the intermediate lighting

function is associated with a discrete grid structure. Finally the paper by Campbell and

Fussell [Camp90] introduces adaptive mesh generation in order to improve the quality and

ei_ciency of radiosity generated images. All of these methods are based on some sort of

mesh generation to store and represent the intermediate lighting function.

A different approach to the light propagation problem was introduce by Watt [Watt90].

Watt introduced the use of backward beam tracing, i.e. beam tracing from the light,

and this was used to capture caustics and several new and interesting lighting effects.

The lighting information from the beam tracing is represented as polygonal illumination

volumes and thus has the advantage in that the structure can capture rapid changes in

illumination without imposing a uniformly small grid. The final image is rendered using a

ray tracing system.

Ray tracing is a very powerful method for generating images which exhibit specular

effects but one of its weaknesses is the expense involved in capturing the effects of diffuse

illumination. Arvo [Arvo86] suggested that ray tracing could be performed in the forward

and backward direction in order to capture diffuse lighting effects. Heckbert [Heck90]

described a bidirectional ray tracing system based on adaptive radiosity textures. Again

we see the use of a simple but adaptive mesh to store the intermediate lighting information°

However, in the same paper, he put forward the idea that a lighting function is a density

and that histograms or kernel estimates could be used to estimate density functions. This

opens the door :[or the use of other types of nonparametric density estimators.

The di_culty with using histograms is that they are discontinuous functions and must

be filtered or interpolated for use in computer graphics. The radiosity solutions are also

histograms that are in fact interpolated for use in rendering. These estimators can be



thought of asfirst order splines.
The problem with kernel density estimates is that, if we let/V denote the number of

samples,then storage is O(N) and evaluation at many points is best done by performing

a sort which is O(NlnN). Evaluation is then O(lnN). If you don't sort, evaluation is

O(/V). Our limited experiments with kernel density estimators revealed that the creation

of quality images required a prohibitively large number of kernels. This makes the estimator

impractical for graphics applications. Difficulties with edge effects were also experienced.

Unfortunately, at the time of Heckbert's paper, no suitable alternative nonparametric

density estimation scheme was available.

In this paper we describe a non-parametric density estimator based on product tensor

splines in which storage is o(N) and evaluation is performed in constant time with the use

of uni%rm structures. Random values from the density estimate can be generated in a

very efficient manner.

3. A BI-DIRECTIONAL RAY TRACING PROGRAM

Let S be a surface in R 3 and I be an interval of real numbers corresponding to the

wavelengths of visible light. Let H be the hemisphere of directions

H y,z)l > o + + z -

\¥e define a lighting function as a function

1.S×I×H_R +

the non-negative real numbers.

The function t represents the lighting function specified by the particular graphics ap-

plication. The function can represent intensity for earlier rendering systems based on local

illumination models [Blin77,Cook82]. For our application we think of a lighting function

as representing the energy per umt time per unit area per unit interval of wavelength per

unit solid angle and thus I is an energy density function. The total energy per unit time

is defined by

and thus l/E is a density function in the sense of probability theory.

Before we continue further, we observe that lighting functions may be defined over

other domains. In particular S may be a volume, a curve or a point. The color domain

may be an interval larger than the interval of visible light or may be one of the usual 3

dimensional color spaces. As S changes, the set of admissible directions H may also be

suitably modified. All of our comments in this paper are fairly easily extended to the

multiplicity of lighting domains.

Given :a scene to render, we identify the lighting functions in that scene with density

functions and generate random rays whose statistical distribution is that of the density

function. Each ray carries with it a wavelength vMue and_ energy v_ue. The wavelength



is determined randomly according to the energy distribution of the light source. In order

that most of the rays intersect the object or objects which have been targeted, a bounding

volume is created about the important objects and a "cone" is created which contains the

light source at one end and the bounding volume at the other.

At this time we have implemented point sources as the primary sources of light and

have used spherical bounding volumes. We then generate light rays which lie in this light

cone. Every ray which is generated is guaranteed, by its construction, to lie in this cone.

To increase the sampling e_ciency, stratification of the direction of light rays is used.

The details of this computation are presented in Appendix 1. Stratification in wavelength

sampling is also used to insure color balance and to improve e_ciency.

The energy associated with each ray depends on the number of rays, AT, the aperture

of the cone which is determined byan angle, ¢0, and the total energy, /3, of the source.

The energy associated with the ray is therefore given by

E -
E

_ay- N 47r

where the second factor is the fraction of the area of the sphere of radius one which lies

inside the cone.

In order for this to be consistent with the ray tracing portion of the program, the

lighting computation in the ray tracer must account for the distance from the point on the

surface to the light source. In particular, if distance is denoted by r, the factor of

1

47rr 2

must be included in the traditional ray tracing computation when a ray is shot towards a

light. This is a well known fact [Kajig0] but it is frequently ignored.

In the light propagation portion of the _gorithm, two speciM types of objects are

recognized. The algorit_ requires a list of objects at which hght rays are targeted and a

list of objects upon which lighting functions will be bu:_It. For each target object and for

each light source, rays are generated towards the targeted object.

Those rays which strike the targeted objects are allowed to propagate through the

scene. If they hit any of the objects upon which a lighting function is to be built, then the

lighting function for that objects is updated. Upon completion of the light propagation

algorithm, the lighting functions are written to a file. A traditional ray tracing program is

applied to the original scene with the lighting functions added as internal lighting sources.

Care is taken so that no redundancy occurs in the accumulation of lighting information.

Depending on the specifics of the implementation, prismatic effects, the focusing of

lenses, color bleeding and indirect lighting can be demonstrated.

4. DENSITY ESTIMATION

We now describe a convenient structure for the representation of lighting functions

over s_faces. We will describe how this hghting function can be deter_ned from data

and also how itc_ be used in a distributedray tracing system.
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A convenient representation for lighting functions can be constructed out of tensor

product splines but for the sake of this exposition we will first consider the standard density

estimation problem and then we will return to the lighting function estimation problem.

The ideas and theorems presented in this section have been developed for the explicit

purpose of estimating lighting functions in computer graphics applications. Let S denote

a subset of some rectangle R in the x- y pl_e and suppose that we wish to generate

a density function over S given data. Given a sequence of knots in both the x and y

directions and a natural number m _>_1 we define l(x, y)to be a product tensor spline of

order m and hence

i j

The functions B_(x) and Bj(y), for a suitable range of values of i and j, are B-spline

basis functions and are completely specified by the knot sequence. The B-spline basis

functions are non-negative at every point and the sum of a!l the basis functions at a point

is always one [Bart87]. These two properties make B-spline basis functions particularly

useful for the estimation of densities, and since we will be working with density functions

it is convenient to introduce normalizing constants

dy

and writ e

"
i J

Since the B-splines basis functions are non-negative, l(x, y) is a density function if all the

a ij are non-negative and if _i _j c_ij - 1.
We now construct the density estimate given data from the density f on S. Let

{ (z k, yk) } _=_ be identically distributed random variabIes from some fixed but unknown

density function f on S. Choose a sequence of knots in the x and y directions whose

spacing depends on N and let B_(x) and Bj(y) denote the corresponding B-splines basis

functions. Let h(N) - max_j h_j. and h(N) - min_j h_j. We assume that the knot spacing

is chosen so that (1) the knot spacing in the x and y directions goes to zero as N goes to

infinity, (2) there is a number C independent of N so that h(N)/h(N) <_ C and (3) that

Nh(N) _ oo as N _ oo.

Define for i and j,

i j

and

- Z E h,j
i j

Theorem 1. If (x, y)is in S and if f is a bounded continuous function over S, then

E(lN(z,y)- f(x, y))2 __, O as N --, _ in wNch case we say that IN(x,y) converges in



This result is easily extended to provide results for parametrically defined surfaces.

In particular let r " S _ R 3 be a smooth 1-1 function. Then M - r(S) - {X -

r(u, v)l(u,v ) e S} is a parameterized surface. Since r is 1-1, we define the function

(u(X), v(X)) • M _ S as the inverse function of r and define a lighting function of M

in terms of a lighting function on S. Given a sample of random points {xk}g=i from a

density function f on M, we de_e a lighting function on S by

aij = 1/N E E Bi(u(Xk))Bj(v(Xk))
i j

and
Bi(x)Bj(y)

- hij
i j

We then define a density function on M as

Or Or

zM(x)- N x Nil

Theorem 2. Suppose that the conditions on the knots and basisfunctions from theorem

! are satisfiedand suppose that there are numbers a and b so that

llOr/a ll _<b

llOr/a ll _<b

and

0 < a _< liar/o,., x OrlO ll < b

If f is continuous and bounded over M then IM converges in mean square error to the

density function f on M.

The proof of these results can

[Gehr9!,Redn91].

be found in two papers by Redner and Gehringer

5. DENSITY ESTIMATION ON THE SPHERE

These results are applicable as long as the manifold M has the same topology as some

subset S of the plane. However, for our lighting function we wish to represent directions as

points on a sphere. Since a sphere is not topologically equivalent to any subset of the plane

we must construct a new density estimator for spheres. We can, however, build upon the

previous results to obtain a density estimator for the sphere. We begin by considering the

simpler problem of estimating a density function on the unit circle C - {(z, y)lx 2 +y2 _ ! }.

Given m > 1 and a uniform knot sequence, we can form the uniform B-spline density

estimator on the interv'M [0,2_]. If the en_ of the inte_al are identified (i.e. the points

are paired up) we obtmn a density estimator on the circle, but of course this estimate

is discontinuous. We fix this by identifying (in order of increasing indices) the first and
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last m- 1 basis functions. Now when the interval [0, 2Ir] is mapped to the circle, there

is no ambiguity at 0 and 27r and furthermore the function exhibits the same degree of

smoothness at the image of 0 and 27r as is does at all of the other knots.

From an operational point of view the density estimate can be obtained in the following

easy fashion. Given data on the unit circle we use the following procedure

!. find the preimage of the data (which are points in/- [0, 27r]).

2. compute the B-spline coe_cients for a density estimator on the interval/.

3. since the the first and last m- 1 B-spline coei_cients are identified, add to the first

m- 1 coe_cients the coei_cient of the corresponding B-spline coefficients at the right

end.

4. replace the last re- 1 coefl_icients with the corresponding coefficients from the first

m- 1 B-spline coei_cients.

5. map this density estimator back to the circle.

Observe that the weights (the h's) will be the same for each B-spline, since we took

the sum of the coei_ncients for the corresponding B-spline. The resulting density estimator

will be m- 2 times dif[erentiable on the circle.

This can be extended to the cylinder in the obvious manner. Of course we require

that the knots lie on a grid and that the spacing be uniform in the x direction. Arbitrary

knot spacing may be used in the y direction since no identification of splines is required

along the top and bottom of the cylinder.

To extend this to the hemisphere we make one additional modification. We observe

that the top line of the rectangle is mapped to the north pole. In order that the density be

continuous at the north pole we identify rows of B-splines along the top of the rectangle.

More specifically, given m > 1 we identify all of the B-splines in each of the top m- t

rows of the rectangle.

From an operation standpoint, we can use the 2-D density estimation routines to

create and evaluate densities on the hemisphere. Given m > 1 and a 2 dimensional grid of

knots which have uniform spacing in a and given a set of data on the hemisphere we use

the following procedure

i. find the preimage of the data (which are points in/_- [0, 27r] x [0, 1]).

2. compute the B-spline coefficients for a density estimator on the rectangle R.

3. since the the first and last m- 1 B-spline coefl_icients are identified for each row, add

to the first m- 1 coefi_icients the coei_cient of the corresponding B-spline coei_cients

in each row.

4. replace the last m- ! coefi_cients in each row with the corresponding coei_cients from

the first m- 1 B-spline coemcients in that row.

5. %r each of the top m- 1 rows replace the B-spline coe_cients with the average of

the coe_cients for the B-splines in that row. Do not use that last m- 1 coefficients

since that would be double counting.

6. map t_s density ,estimator ba_ to the he.sphere using the function

m(0, _) = (sin(0)x/i- t 2, cos(8)Vq - _:z _)

The resulting density estimate on the he.sphere will be m- 2 times differentiable except

possibly at the poles where the denMty is continuous.



Extension to the entire sphere is accomplished in a similar fashion. We use a larger

rectangle, [0, 27r] x [-1, 1], and use the hemisphere modification to the cylinder procedure

at both the top and the bottom of the rectangle.

In order for the density estimation procedure to as efficient as possible it is desirable

for the supports of the basis functions have approximately the same area and that they

be as 'round' as possible. In the following table, h is the height of the top section of the

rectangle and a and b _e the width and height of the remaining rectangles. The numbers

have been chosen so that each celt has approximately the same area and so that a _ b. The

following_l.es are obtained fromthe _ormul_sh - 1/(ij _+ _), b- ij/h, _d _ - 2_/ij.
The number of cells wil! be ij 2 + 1.

i j h b a number of cells

5 _ _/6 5/6 2_/5 6
6 1 1/7 6/7 7r/3 7

7 1 1/8 7/8 2_/7 8

5 2 1/21 10/21 27r/I0 21

6 2 1/25 12/25 _/6 25

7 2 _/29 14/29 2_-/_4 29
5 3 1/46 15/46 27r/15 46

6 3 _/55 _s/55 _-/9 55
7 3 1/64 21/64 27r21 64

For spline of degree m, the knots in the plane which correspond to these regions are

x e {--(m --l)a,...,--a,O,a,...,27r,2_r + a, .... ,27r + (m- l)a}

So for example, if m - 3, i - 5 and j- 1 then the knots satisfy

x E {-2a, -a, O, a, 2a, 3a, 4a, 5a -- 2_r, 6a -- 27r + a, 7a -- 27r + 2a}

y E {-2b,-b,O,b- 1 - h, 1,1 + h,1 + 2h}.

6. ESTIMATION OF LIGHTING FUNCTIONS

It is an easy step from the estimation of density functions to the the estimation of

lighting functions. Given a set of rays, randomly generated from a light source, these rays

strike the surface of interest. Suppose that the rays strike a diffuse planar surface S and

suppose that we are working in wavelength. A lighting function can be described in terms

of a three-dimension_ tensor spline. Each ray emanating from the light source, carries

with it an energy value and a wavelength value. Let (xk,Yk), k -- 1,...,N denote the

coordinates at which the rays strike the surface _d let Ak and Ek, k - 1, .... , N denote

the wavelength and the energy associated with the kth ray. Set up a system of knots in
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the x, y and/_ directions which define basis functions Bi(x), By(y) and B,(k).

define

o_ij, -- 1/N E E E EkBi(xk)Bj(yk)B,(Ak)

i j I

Bi(x)Bj(y)B,(£) dA dA

and

_re then

i j l hijl

Use of these tensor splines as lighting functions is extremely efficient in terms of

both storage and computational speed. Procedurally, the unknown coei_cients (the a's)

• _Sare initially set to zero and the scaling coefficients (the hijz ) are determined. In the

rectangular case each hijl iS the product of three factors from integrals in the x, y and ,_

directions. These vaiues are easi!y computed since we are working with splines. When S is

not rectangular each hijl factors into an integral over S times an integral over wavelength.

The computational expense of usingtensor spline lighting functions is minimal. The

lighting functions are as smooth as the user specifies and storage is proportional to the

total number of basis functions. Once initialized, the tensor sptine lighting function can be

updated in constant time for uniform knot spacing and (due to thebinary searches which

are used) logarithmic time in the number of knots for arbitrary knot spacing.

The extension of this procedure to directionally dependent fighting functions is carried

out by extending the function to five _mensions using the product of three dimensional

tensor product splines for space and wavelength and the modified two dimensional splines

developed for the hemisphere. The extension to directional!y dependent lighting functions

over smooth surfaces is straightfoward using the material from section 4. We recall that

many lighting functions vary slowIy over the s_face when you use distributed light sources

and most of the sudden changes in brightness occur at boundaries of objects. Therefore

the number of knots used in each coordinate direction shouId be reasonable.

7. TENSOR LIGHTING FUNCTIONS AS DISTRIBUTED LIGHT SOURCES

In a distributed ray tracing system, area light sources are sampled to illuminate the

scene. It is required then, that we be able to generate random points from the tensor

product lighting functions. In the case that we have used a uniform knot spacing in each

coordinate direction, this is a very manageable problem.

We begin by observing that if x l, x=,... Xm are independent and uni%rmly distributed

over the interval .[0, 1] then the density function for the random variable x -- xl + x2 +

.... + Xm is a _ifo_ B-spline of order m. Our _ffuse tensor product lighting function

over a rectangle has the form

Bi(x)Bj(y)Bz(,_)

i j l



<

where

Bi(x)Bj(y)Bl()_) dA dA

and

aij, - 1/N E E E EkBi(xk)Bj(Yk)Bz()_k).
i j z

If a uniform knot spacing is used in each of the coordinate directions, then each basis

function is a scaled translated version of the standard basis function on the interval [0, m].

To generate a random point from such a light source, select indices ijl with probability aijz

(this is done using a summed area table) and generate a random point (x, N, ,k) by select-

ing random points from the densities Bi(x), Bj(y) and Bl(,k). If a directionaliy dependent

lighting function has been created and again if the knots are uniformly spaced in the di-

rection of each of the coordinate axis, we generate random points on the hemisphere using

the same procedure and the mapping D(O, t)" [0, 27r] x [0, 1] -+ H. For parametrically de-

fined surfaces, random points are generated in the plane and mapped to the parametrically

defined surface.

8. EXAMPLES

Image 1 is an image of the lighting function created by the light propagation algorithm.

A point light source is located at a distance 600,000 units from a wall which is a unit square.

The lighting energy is 3 x 1014 units. The energy distribution for the source is natural

sunlight data from Wyszecki and Stiles [Wysz82]. The extreme distance was chosen so that

the incoming rays are nearly parallel and the extreme value for the energy compensates

for the 1/r 2 fa_ off of the light energy density. The light is passed through an equilateral

prism and strikes the wall.

The lighting function is made of three tensor product lighting functions (one each for

of the r, g and b values) with 20 uniformly spaced knots in both coordinate directions.

The image was created by applying the light propagation Mgorithm and simply evaluating

the tensor product spline at 512 x 512 locations. The lighting function was zoomed by a

factor of three to take this picture and still the picture is extremely smooth.

The second image results from the combined efforts of the light propagation program

and a traditional ray tracing program. The scene contains the same objects as are found

in image 1. Two spheres and a mirror, which is perpendicular to the first wall, have been

added to the scene. An additional light source near the view point has also been added.

Notice that one of the spheres causes a shadow on the wall creating a darkened place

within the spectrum. Even though the illuminating source is a point source, the spline

lighting functions create a very gentle transition into the shadow and creates the illusion of

a penumbra. A few "pops" are possibly noticeable due to the sampling of the spectrum as

a diffuse distributed source in the ray tracing portion of the scene. These can be eliminated

by a postprocessing procedure described in Lee and Redner 1990 [Leeg0], by improving

the sampling stratification in the ray tracing program [Lee85] or by simply increasing the

sampling level. If you look closely you can see the image of the prism reflected in the dark

sphere.

10
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9. COMMENTS AND FUTURE WORK

In thispaper we have described tensor product lightingfunctions and have presented

algorithms for their use and the theory which supports their application. The tensor

product splinelightingfunctions were developed in order to provide convenient and efficient

procedures for use with computer graphics systems. These lightingfunctions are easily

evaluated, can be generated from data and can alsobe statisticallysampled. This implies

that tensor product lightingfunctions can be used in almost any computer graphics system

and in particularcan be used to replacemany of the piecewise constant (firstorder splines)

in a number of computer graphics application.

To demonstrate the effectivenessof these lightingfunctionswe have incorporated them

into a wavelength dependent bidirectionalray tracingprogram. Prismatic effectsgenerated

by our two pass system have been demonstrated and causticsand the focusing of lenses,

color bleeding and indirect lighting affects can also be achieved using this type of system.

The areas of bidirectional ray tracing with wavelength dependent sampling and the

representation of complex lighting functions are relatively new and immature areas and

hence there is much work to be done. In particular, in the area of bidirectional ray tracing,

there are numerous issues associated with ei_iciency, sampling and stratification which need

to be considered. The problem of ray generation from directionally dependent sources is an

interesting problem as well as the use of other types of "cone" strategies not based on the

use of spherical bounding volumes. There are many possible algorithms which combine

light propagation and classical ray tracing and these must be individually investigated

and the possibility of iterating on the light propagation algorithms offers the promise

of improved realism in computer generated images. Work is continuing on wavelength

dependent models where there are interesting sampling issues involved.

The representation of complex lighting functions over surface provides numerous in-

teresting questions. The work of Reclner and Gehringer [Redn91,Gehr91] provide one set

of solutions to this problem. This work is extremely general being posed in an abstract

setting. Splines are not an essential part of this theory, but instead partitions of unity form

the basis for the work. Splines are convenient examples of partitions of unity which are

suitable for rapid and efficient computation. A number of other alternatives are possible

and should be considered.

[ArvoSG]

[Bart87]
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APPENDIX i.

THE GENERATION OF RAYS WITHIN A CONE

Consider the mapping

D'[0,27r] x [-1,1]--+ the unit sphere.

defined by

D(O, t) - (sin(O) V/1 - t 2 , cos(O) X,/1 - t 2 , t).

This function is an onto mapping which is one to one on the interior of the rectangle. Since

IID, x Doil- i this mapping is area preserving. This impIies that if (_, _)is uniform in

[0, 2rr] x [-1, 1] then D(O, t)is a unifo_ random variable on the sphere.

A word of warning is is order. It is common to write the vector

(si (e) Ji - ,=, os(e)v/i - ,=,

&s

(si (o) cos(0)si (¢),cos(C)).

Points on the unit sphere can then be generated by generating 8 and t - cos(C) uniformly

on [0,2rr] and [-1, 1] respectively, with sin(C)defined as V/1- cos 2 ¢. If, instead, you

generate ¢ uniformiy on [0,27r], you do not get a uniform distribution on the sphere.

Instead you get a distribution which is too bright at both poles.

Now we consider the problem of generating random vectors whose angle with the

positive z axis is less that or equal to some angle ¢0. If we let z0 -cos(C0) then the region

R_0 - [0, 2rr] x [z0, 1] is mapped onto the intersection of the sphere with the cone pointing

in the direction of the positive z-axis with angle ¢0.

We can therefor generate direction vectors within this cone by generating vectors in

the rectangie Re0 and applying the mapping D.

We make the interesting observation that since the area of the rectangle [0, 2rr] x [z0, !]

is 2rr(! -z0)then the area of a 'cap' of the sphere, i.e. the set of all points on the sphere

with z coordinate greater than or equal to some value z0, must also be 2rr(1- z0). This is

simply 27r times the thickness of the cap.

If the center of the cone of interest does not point in the direction of the positive z-axis,

then the data generated by the above process must be rotated. If the direction of the cone
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is defined by a unit vector U - (ul,u2,u3) then we will want a rotation which maps the

vector (0, 0, 1) to U. This can be done in two stages, a rotation about the y-axis followed

by a rotation about the z-axis. If we let v3 - V/1 - u32 then the matrices associated with

these two rotations are

o0 1 0

_I) 3 0 u 3

and

ilul_u20tu 2 U 1 0

v3 0 0 v3

whose product (taken in the proper order of course) is

1

703 t lilU3 _t2 lilY3 t
U2U3 Ul U2V3

-v_ 0 uava

Stratification of samples can be used to reduce the variance of estimates of lighting

function parameters. In the generation of rays from the light source, stratification can

be implemented in both the direction of the rays and their associated wavelengths. The

scheme outlined in section 5. can be used to stratify the ray directions. A version of

this has been implemented. Stratification in wavelength is also recommended and is also

implemented in our ray tracing system.
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Image t.

A spectrum created from natural sunlight

Image 2.

Spectrum Effects
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